23 research outputs found

    Optimizing peak gust and maximum sustained wind speed estimates from mid-latitude wave cyclones

    Get PDF
    Wind storms cause significant damage and economic loss and are a major recurring threat in many countries. Maximum sustained and peak gust weather station data from multiple historic wind storms occurring over more than three decades across Europe were analyzed to identify storm tracks, intensities, and areas of frequent high wind speeds. Wind surfaces for maximum sustained and peak gust winds were estimated based on an anisotropic (directionally-dependent) kriging interpolation methodology. Overall, wind speed magnitudes and high intensity locations were identified accurately for each storm. Directional trends and wind swaths were also consistently located in appropriate locations based on known storm tracks. Anisotropic kriging proved to be superior to isotropic (non-directional) kriging when modeling continental-scale wind storms because of the identification of strong directional correlations across space. Results suggest that coastal areas and mountainous areas experience the highest wind intensities during wind storms. These same areas also experience high variability over short distances and thus the highest error measurements associated with concurrent interpolated surfaces. For this reason, various covariates were utilized in conjunction with the cokriging interpolation technique and improved the interpolated wind surfaces for five wind storms that impacted both the mountainous and topographically-varied Alps region and the coastal regions of Europe. Land cover alone reduced station-measured standard error most significantly in a majority of the models, while aspect and elevation (singularly and collectively) also reduced station standard error in most models as compared to the original kriging models. Additional comparisons between different areal scales of kriging/cokriging models revealed that some surface wind variability is muted at the continental scale, but identifiable at the local scale. However, major patterns and trends are more difficult to ascertain for local-scale surfaces when compared to continental-scale surfaces. Large station error can be reduced through local kriging/cokriging, but additional research is needed to merge local-scale semivariograms with continental-scale models. Results showed substantial improvements in wind speed surface estimates over previous estimates and have major implications for catastrophe modeling companies, insurance needs, and construction standards. Implications of this research may be transferrable to other geographies and create an impetus for database and covariate improvement

    Maxent Estimation of Aquatic Escherichia Coli Stream Impairment

    Get PDF
    Background: The leading cause of surface water impairment in United States’ rivers and streams is pathogen contamination. Although use of fecal indicators has reduced human health risk, current approaches to identify and reduce exposure can be improved. One important knowledge gap within exposure assessment is characterization of complex fate and transport processes of fecal pollution. Novel modeling processes can inform watershed decision-making to improve exposure assessment. Methods: We used the ecological model, Maxent, and the fecal indicator bacterium Escherichia coli to identify environmental factors associated with surface water impairment. Samples were collected August, November, February, and May for 8 years on Sinking Creek in Northeast Tennessee and analyzed for 10 water quality parameters and E. coli concentrations. Univariate and multivariate models estimated probability of impairment given the water quality parameters. Model performance was assessed using area under the receiving operating characteristic (AUC) and prediction accuracy, defined as the model’s ability to predict both true positives (impairment) and true negatives (compliance). Univariate models generated action values, or environmental thresholds, to indicate potential E. coli impairment based on a single parameter. Multivariate models predicted probability of impairment given a suite of environmental variables, and jack-knife sensitivity analysis removed unresponsive variables to elicit a set of the most responsive parameters. Results: Water temperature univariate models performed best as indicated by AUC, but alkalinity models were the most accurate at correctly classifying impairment. Sensitivity analysis revealed that models were most sensitive to removal of specific conductance. Other sensitive variables included water temperature, dissolved oxygen, discharge, and NO3. The removal of dissolved oxygen improved model performance based on testing AUC, justifying development of two optimized multivariate models; a 5-variable model including all sensitive parameters, and a 4-variable model that excluded dissolved oxygen. Discussion: Results suggest that E. coli impairment in Sinking Creek is influenced by seasonality and agricultural run-off, stressing the need for multi-month sampling along a stream continuum. Although discharge was not predictive of E. coli impairment alone, its interactive effect stresses the importance of both flow dependent and independent processes associated with E. coli impairment. This research also highlights the interactions between nutrient and fecal pollution, a key consideration for watersheds with multiple synergistic impairments. Although one indicator cannot mimic the plethora of existing pathogens in water, incorporating modeling can fine tune an indicator’s utility, providing information concerning fate, transport, and source of fecal pollution while prioritizing resources and increasing confidence in decision making. Methods We used the ecological model, Maxent, and the fecal indicator bacterium Escherichia coli to identify environmental factors associated with surface water impairment. Samples were collected August, November, February, and May for 8 years on Sinking Creek in Northeast Tennessee and analyzed for 10 water quality parameters and E. coli concentrations. Univariate and multivariate models estimated probability of impairment given the water quality parameters. Model performance was assessed using area under the receiving operating characteristic (AUC) and prediction accuracy, defined as the model’s ability to predict both true positives (impairment) and true negatives (compliance). Univariate models generated action values, or environmental thresholds, to indicate potential E. coli impairment based on a single parameter. Multivariate models predicted probability of impairment given a suite of environmental variables, and jack-knife sensitivity analysis removed unresponsive variables to elicit a set of the most responsive parameters. Results Water temperature univariate models performed best as indicated by AUC, but alkalinity models were the most accurate at correctly classifying impairment. Sensitivity analysis revealed that models were most sensitive to removal of specific conductance. Other sensitive variables included water temperature, dissolved oxygen, discharge, and NO3. The removal of dissolved oxygen improved model performance based on testing AUC, justifying development of two optimized multivariate models; a 5-variable model including all sensitive parameters, and a 4-variable model that excluded dissolved oxygen. Discussion Results suggest that E. coli impairment in Sinking Creek is influenced by seasonality and agricultural run-off, stressing the need for multi-month sampling along a stream continuum. Although discharge was not predictive of E. coli impairment alone, its interactive effect stresses the importance of both flow dependent and independent processes associated with E. coli impairment. This research also highlights the interactions between nutrient and fecal pollution, a key consideration for watersheds with multiple synergistic impairments. Although one indicator cannot mimic theplethora of existing pathogens in water, incorporating modeling can fine tune an indicator’s utility, providing information concerning fate, transport, and source of fecal pollution while prioritizing resources and increasing confidence in decision making

    Modeling the Potential Distribution of Bacillus anthracis under Multiple Climate Change Scenarios for Kazakhstan

    Get PDF
    Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP) to model the current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate change scenarios using a 5-variable data set at 55 km2 and 8 km2 and a 6-variable BioClim data set at 8 km2. Future models suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting ∼14–16% loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting ∼15% loss at 55 km2, ∼34% loss at 8 km2, and ∼30% loss with the BioClim variables. Only very small areas of habitat expansion into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either B2 model at 8 km2. Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics, can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B. anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also have broader applications to global public health surveillance relating to other diseases in addition to B. anthracis

    Canonical Variable Selection for Ecological Modeling of Fecal Indicators

    No full text
    More than 270,000 km of rivers and streams are impaired due to fecal pathogens, creating an economic and public health burden. Fecal indicator organisms such as Escherichia coli are used to determine if surface waters are pathogen impaired, but they fail to identify human health risks, provide source information, or have unique fate and transport processes. Statistical and machine learning models can be used to overcome some of these weaknesses, including identifying ecological mechanisms influencing fecal pollution. In this study, canonical correlation analysis (CCorA) was performed to select parameters for the machine learning model, Maxent, to identify how chemical and microbial parameters can predict E. coli impairment and F+-somatic bacteriophage detections. Models were validated using a bootstrapping cross-validation. Three suites of models were developed; initial models using all parameters, models using parameters identified in CCorA, and optimized models after further sensitivity analysis. Canonical correlation analysis reduced the number of parameters needed to achieve the same degree of accuracy in the initial E. coli model (84.7%), and sensitivity analysis improved accuracy to 86.1%. Bacteriophage model accuracies were 79.2, 70.8, and 69.4% for the initial, CCorA, and optimized models, respectively; this suggests complex ecological interactions of bacteriophages are not captured by CCorA. Results indicate distinct ecological drivers of impairment depending on the fecal indicator organism used. Escherichia coli impairment is driven by increased hardness and microbial activity, whereas bacteriophage detection is inhibited by high levels of coliforms in sediment. Both indicators were influenced by organic pollution and phosphorus limitation

    Canonical Variable Selection for Ecological Modeling of Fecal Indicators

    No full text
    More than 270,000 km of rivers and streams are impaired due to fecal pathogens, creating an economic and public health burden. Fecal indicator organisms such as Escherichia coli are used to determine if surface waters are pathogen impaired, but they fail to identify human health risks, provide source information, or have unique fate and transport processes. Statistical and machine learning models can be used to overcome some of these weaknesses, including identifying ecological mechanisms influencing fecal pollution. In this study, canonical correlation analysis (CCorA) was performed to select parameters for the machine learning model, Maxent, to identify how chemical and microbial parameters can predict E. coli impairment and F+-somatic bacteriophage detections. Models were validated using a bootstrapping cross-validation. Three suites of models were developed; initial models using all parameters, models using parameters identified in CCorA, and optimized models after further sensitivity analysis. Canonical correlation analysis reduced the number of parameters needed to achieve the same degree of accuracy in the initial E. coli model (84.7%), and sensitivity analysis improved accuracy to 86.1%. Bacteriophage model accuracies were 79.2, 70.8, and 69.4% for the initial, CCorA, and optimized models, respectively; this suggests complex ecological interactions of bacteriophages are not captured by CCorA. Results indicate distinct ecological drivers of impairment depending on the fecal indicator organism used. Escherichia coli impairment is driven by increased hardness and microbial activity, whereas bacteriophage detection is inhibited by high levels of coliforms in sediment. Both indicators were influenced by organic pollution and phosphorus limitation

    Ecological Niche Modeling and Sustainable Agroforestry: Climate Change Mitigation for Guatemalan Coffee

    No full text
    Coffea arabica is a species with far-reaching impacts on the global economy. Nevertheless, climate-related challenges threaten the coffee industry at its source: its growing regions. The coffee industry is a significant economic driver in Guatemala, but farmers are increasingly reporting losses in crop yield and arable land due to climate-related challenges. Ecological niche modeling (ENM) can be employed to make predictions about the current and future suitability of regions for a species by identifying significant biotic or abiotic indicators. An ENM was used to project suitable land into the future using climate change projection models known as representative concentration pathways (RCPs), for the coffee plant and a number of other species. Due to the potential of shade trees to lessen heat stress on coffee plants, common shade trees for the region were modeled. Additionally, a fungus species responsible for detrimental coffee leaf rust was modeled. Results of these models indicated potential for substantial climate-related habitat losses for the coffee plant in the coming decades. Examination of model predictions allow for greater understanding of the climate-related variables affecting the ecology of the coffee plant, and the potential risks to the industry, in a changing climate. Additionally, ENM models for coffee rust and shade trees can help Guatemalan farmers make informed decisions about farm management

    Cross-Correlation Modeling of European Windstorms: A Cokriging Approach for Optimizing Surface Wind Estimates

    No full text
    Maximum sustained and peak gust winds from eighteen European windstorms over the last 25 years were analyzed previously to develop surface-level wind predictions across a large and topographically varied landscape based on an anisotropic kriging interpolation methodology for meteorological station data. Results suggested that coastal and mountainous areas experience the highest wind speeds and highest variability over short distances, resulting in the highest errors across concurrent interpolated surfaces. This study utilizes covariates in conjunction with cokriging to investigate the use of cokriging as a method of improvement through the interpolation of five windstorms that impacted both the Alps region and the topographically-varied coastal regions of Western Europe. Results show that cokriging improves isotach interpolation for windstorms in 8 out of 10 models by reducing root mean square error and the total number of high-error stations, primarily in coastal and mountainous areas. Land cover alone contributed to the greatest model improvement in a majority of the models, while aspect and elevation (singularly and collectively) also improved models when compared to original kriging models. Improved surface interpolation is critical for improved understanding of macro-scale windstorm patterns and resulting damage, thus improving risk and vulnerability estimates

    Comparison of predicted <i>B. anthracis</i> habitat changes from both climate scenarios using five variables at a resolution of 55 km<sup>2</sup>.

    No full text
    <p>Potential future habitat changes based on the A2 climate change scenario (A) and the B2 climate change scenario (B). Differences between each climate change scenario (C).</p
    corecore